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ABSTRACT

TINS images consist of six channels of data acquired in bands between 8
and 12 um; thus they contain information about both temperature and enmit-
tance, Scene teaperatures are controlled by the reflectivity of the surface,
but also by its geometry with respect to the sun, time of day, and other
factors unrelated to composition. Emittance is dependent upon composition
alone. Thus the photointerpreter may wish to enhance eaittance information
selectively, Because thermal emittances in real scenes vary but little, image
data tend to be highly correlated among charnels., Special image processing is
required to make this Inforwation available for the photointerpreter. Proces-
sing iIncludes noise removal, construction of model emittance images, and
construction of false-color pictures enhanced by decorrelation techniques.

INTRODUCTION

Thermal infrared radiance measurements historically have been
used to estimate temperatures of surfaces. Thermal infrared
images have generally been used the same way. Thermal radiance
is related to the temperature of a swface through Planck’'s Law
and a proportionality factor known as the thermal emissivity or
emittance. The temperature is a function of a number of factors.
Amonyg these are: reflectivity in visible and near—infrared wave-
lengths, thermal inertia of the material composing the surface,
the geometry of the surface with respect to the sun, the time of
day, and various characteristics of the atmosphere. Some of
these factors - the reflectivity and thermal inertia - are
intrinsic properties of the composition of the exposed material.
Other factors are properties of the surface itself. 5till others
have nothing to do with the surface, but depend on the weather,
time of day, and so forth. Thus radiance images convey much
information, but not necessarily in a simple way.

Thermal emittance of the earth’'s surface, on the other hand, is
controlled largely by the composition of the surface material, by
the texture of the surface, and by the local topography,
independent of lighting conditions, weather, or time of day.
Furthermore, emittance wvaries with wavelength in a way that is
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distinctive for many silicate and other rock—forming minerals
fLyon, 192651. Thus emittance spectra are a useful aid in litho-
logic mapping and other geologic studies.

TIMS images are multispectral; they consist of six channels of
radiance data acqguired in bands between 8 and 12 um [Palluconi
and Meeks, 19851. Thus they contain information about both the
temperature of a surface, and also its emittance spectrum.

The photointerpreter has at his disposal a wealth of information
in TIMS images. I+ he is interested in surface composition, he
may chose to enhance emittance information selectively. Because
thermal emittances in real scenes vary but little, image data
tend to be highly correlated among channels. Special . image
processing is reguired to make this information available for the
photointerpreter. Processing includes noise removal, calculation
of model emittance images, and construction of false-color
pictures enhanced by decorrelation technigues.

ENHANCEMENTS
Noise Removal

TIMS data contain noise from a number of sources. In addition to
random detector noise, which has an NEAT of ~0.2° at 300 K
[Falluconi and Meeks, 19851, there is found both low— and high-
frequency striping, microphonic interference and a signal-
dependent bit error in one preamplifier (Ch. 6&). Saome of these
components may be removed by the appropriate image—processing
technique, but each requires a different approach.

Random MNoise... Random detector noise is intrinsically part of
the image data. The dynamic range is chosen such that the noise
level 1is generally 1 DN. Pixels having DN that are radically
different than neighboring values can be recognized and removed
with a wvariety of technigues, most notably median filtering.
Approaches such as this will also remove "deviant" or unusual
signal, however. In general, the amplitude of random detector
noise in TIMS is too low to warrant efforts to suppress it.

Bit Errors... Unlike the low-amplitude random noise, bit errors
are obvious defects in the TIMS data. They appesar to occur when
there are strong and rapid changes in the scene radiance; thus
the bit errors will often be encountered on one side of a sharp
high—-contrast feature in a scene. They are generally removed by
bilinear interpolation, in algorithms that compsire local to
neighboring DN values. Local values that exceed the mean DN of
the neighboring pixels by more than a settable threshold are
replaced by the mean DN itself. Median filters also are effec-—
tive at suppressing this type of noise.

Bit erreors seem to occcur infrequently, but their tendency to be
grouped along interesting image features (edges) is disruptive to
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photointerpretation. Therefore their removal is usually helpful.

Low~Frequency Striping... TIMS data frequently contain a low—
amplitude, low-frequency striping or banding that is attributed
to changes in detector sensitivity. Although the striping is so0
subtle (£10% of the encoded radiance) that it may be difficult to
see in images made from the radiance data, it tends to be poorly
correlated among channels. Therefore this striping is "colored;"
it masquerades as scene emittance changes. In fact, the ampli-
tude of this souwrce of noise in emittances may be so high that it
is the greatest source of variance in the emittance images.
False-color images made from calculated emittance values may be
dominated by the low—+frequency striping. In these pictures the
low—+frequency striping looks like varicolored horizontal bands or
bars about 200 image lines high. Because emittance is often the
parameter of greatest interest in TIMS data, this striping is a
serious problem. For photointerpretation, striping removal is
desirable. For calculating meaningful emittance data, removal is
necessary.

Fortunately, TIMS scans a hot and a cold blackbody of measured
kinetic temperatures once per image line. Since the detector
response  to  the thermal photon flux i1s linear [Palluconi and
Meeks, 19851, this information is adequate to calibrate the
detectors line by line. The procedure is simple: The photon flux
from the reference blackbodies for each TIMS channel is calulated
using the measured temperatures, the spectral sensitivity of the
detectors and filters, and Planck’'s Law. From this information
the linear equation relating the DN values reported +for the
blackbodies to the calculated fluxes is found. This will wvary
from scan line to scan line. Then the photon fluxes for the
image pixels are found, using the reported DN values and the
linear coefficients found from the calibration data.

Use of the TIMS on-board calibration data as described above is
geffective in suppressing the low—frequency striping due to
detector sensitivity changes. In enhanced pictures the banding
will no longer be visible. But some extra precautions are
necessary in  processing to avoid Iintroducing additional high-
frequency striping during banding suppression. The problem arises
hecause, like the image data, the calibration data are
contaminated by microphonic noise and occasional dropped bits.
Obviously, if the data used to calibrate the image are themselves
in error, striping removal will be ineffectual or worse.
However, because the detector ssnsitivity changes slowly, any
high—freguency +Ffluctuations in the calibration data must be
caused by noise. Drop—outs may be removed from the calibration
data by median filtering; then high—frequency microphonic noise
may be removed by low-pass filtering in either the spatial or
frequency domain. These precautions should always be taken.

High—Frequency Striping... A major source of high-freguency
striping in TIMS data is microphonic vibration of the detector,
which sits on a long stem in its dewar. In one TIMS image of
Newfoundland, microphonic noise was oblique to the scan lines and
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had wavelengths of 200 samples and 25 lines per cycle (Figure 1).
The exact frequencies are variable, even if the image is acgquired
at the same scan rate. Obviously, the angle of the striping and
its 4frequency in the scan direction vary with the scan speed
selected during data acquisition by the technicians operating
TIMS.

c d

Figure 1. A TIMS image of Newfoundland, showing noise. (a) Radiance image.
{b) Two-dimensional Fourier transform of an image subscene. The modulus is
displayed as black (zero) to white (high). Frequencies vary from zero (origin,
at center) to 0.5 cycles/pixel (edge). Horizontal axis displays frequencies
in the scan direction. (c) Microphonic noise removed from the image. (d)
residual striping in image after microphonic noise was removed.
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Figure 1 shows (a) a TIMS image of Newfoundland, (b a two-—
dimensional Fourier transform of the image data, {(c} the micro-
phonic noise found in the image, and (d}) residual horizontal
striping that remained after the microphonic noise was removed.
Very 1little microphonic noise is seen in the radiance image.
However, the Fourier transform shows large bands and spikes that
correspond to the noise. Additionally, the transform has large
amplitudes on the axes. These occur if there are radiance
gradients across the image, because of the pericdic nature of the
transform. Finally, this particular image was geometrically
corrected before it was transformed, to compensate for panorama
foreshortening. This has the effect 1in the transform of
spreading out noise spikes in the scan t(horizontal) direction.

Most of the image data are concentrated in a continuum near the
origin of the transform. The obviowus noise in Figure 1id  has
frequencies that plot near the continuum also, a little more than
1 pixel away in the scan direction and ~20 pixels away 1in ths
line direction (1st and 3rd quadrants). The microphonic noise is
not spectrally pure, and its dominant freguencies are not
necessarily simple integer factors lower than the Nyquist
frequency. Because of these esffects, the dominant noise spike is
distributed in a cross, orthogonal to the coordinate system. In
this instance, scan—direction smearing by the geometric
corrections discussed above appears to have been significant.

The noise images shown in Figures lc,d were isoclated using the
techniques described bslow. The source of the residual striping
is uncertain. Some of it may result because of changes in
detector sensitivity during the interval between measuwrement of
the internal reference and measurement of the scene. High-
frequency striping in TIMS data is variable in amplitude; 1L is
not always a dominant component of the image. However, as with
the banding due to changing detector sensitivity, even subtle
striping is exaggerated by processing the image to eaxtract
emittance data, or in constructing radiance ratio images. Below,
ratioced radiance data from a relatively noise—-free TIMS image of
Death Yalley, California, are used to illustrate high-frequency
striping removal by filtering in the frequency (Fourier) domain.

Figure 2 shows the TIMS image of Trail Canyon Fan, across Death

Valley from Monument Headquarters at Furnace Creek. An enhanced
false—color picture of this image is in Kahle and Goetz [1983]1 or
in Gillespie st al. £i19841. Figure 2Z2a is the ratio picture of
TIMS channels 5/4, before noise removal. The microphonic noise
is nearly diagonal in this picture, with a wavelength of ~50
pixels. Additional, subharizontal high—-frequency striping 1is
evident. Finally, bit errors (dark in Channel &) appear as

bright spots, especially evident on the west sides of the dark
regions on the valley floor. The bit errors were identified and
removed using the approach discussed above, before transfaorming
the image to the Fourier domain. Figure 4b shows the Fourier
transform of the ratio image. The obvious microphonic noise is
confined to two horizontal bars near the horizontal axis, as for
the Newfoundland image, and for the same reasons.
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Figure 2, TIMS image of Death Valley, California. (a) Ratio picture,
Channels 35/6, showing microphonic noise. (b) Fourier transform. (c) Fourier

transform with noise masked out. (d) Ratio image with microphonic noise
removed.

Filtering in the Fourier domain is readily accomplished by
multiplying the tramsform by

a2 mask (the filter} that passes or
rejects data. It is not necessary that the filter be a binary
function, but Ffor this esxample 1t was. Figure 1lc shows the
filtered transtorm of Figures lb. The filter multiplisd by zeroc
tho

s2 image components that plot on the vertical asxis or near the
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haorizontal axis (except very near the arigin). The Ffiltered
image was then reconstructed by performing a Fourier transforma-
tion on the filtered transform (inverse transformation). The
filtered ratio picture is shown in Figure 1d. Cursory inspection
shows that most of the microphonic noise has been suppressed.

Detailed inspection of the filtered image of Figure 1d reveals a
number of directional artifacts that appear as an oriented fabric
[Gillespie, 192801. These undesired artifacts are consequences of
removing too much power from the image near the zero—frequency
axes. The fabric can be suppressed using a more complicated
filter that passes data in a narrow horizontal bar within the
suppressed bar of Figure 1lc. These results are not shown here.

Filtering in the Fourier domaln is a conceptually simple approach
to removing noise in digital images that has been successfully
used on a wide range of projects [e.qg., Rindfleisch et al.,
19711. There are drawbacks, however, for the user of small
computers. The transform is computatiaonally expensive; the fast
Fourier transform (FFT) requires the period of the image chip to
be a power of two. The TIMS data are not. There are ways to
solve this problem: the image may be "padded" with gray data to
widen it; it may be truncated to make it smaller; or the FFT need
not be used to perform the transformation.

Another approach is to +ilter the image in the spatial domain (as
acquired), by convolution. In general, two—dimensional
convolution is an expensive procedure, but because most of the
noise in the TIME data is subparallel with esither the scan or the

flight axis only a one-dimensipnal filter 1is required. The
weights in the filter kernel are found from the 1-D transform of
the freguency—domain filter discussed above. These may be

calculated analvytically, for simple filters [e.g., Castleman,
19721,

The gensral equation for a 1-D spatial-domain filter kernel that
has the same effect as the binary filter discussed above is given
by:

sin{w As x)
hix) = 8{x) — 2as cos{(2msax) (1>
™ AS ¥

where h is the filter kernel, x is the kernel sample value in the
scan or flight direction, as appropriate, and s is the freguency
in the transform. The filter kernel is centered at x = 0. The
Kronecker delta function 8(x) is an all-pass filter:

Stz = 1 : x =20
(2)
8{x) = 0O : »x * 0
Fernel h{(x) i= a high-pass filter. The frequencies that are not

passed by h(x) are specified by the right-hand terms of equation
18
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1: 8o 1is the central frequency to be suppressed, and As is the
range of frequencies centered on go to be suppressed. The cosine
term is the transform of the impulse pair at so in the frequency
domain. The sinc function is the transform of a rectangular
pulse of width as (in the freguency domain).

Now for the discrete transform of an image of N8 samples, the
frequency interval As corresponding to a sample interval Ax  in
the transform is given by:

Ax AxX
= == (3

0.5
NG/2 NS

The factor of 0.5 in Equation 3 is the Nyquist frequency. Thus,
if we suppress the smallest range of fregquencies possible in the
discrete transform of a 1024-sample image (Ax = 1), as = 1/1024
and

sinc{nmx/1024)
hi{x) = 8&{x) - - cos (2msox) (4)

Weights for the convolution filter may be found from equation 4,
or a similar expression if other filter characteristics are
desired.

Convolution filtering has two noteworthy drawbacks: first, the
filters will "feel" the edge of data when they are hal¥ their
width from an edge. This results in a bright or dark artifactual
band down the sides of the image (horizontal filter) or along the
top and bottom (vertical filter). This artifact can bhe reduced
in severity by reflecting the image about its 1limits and
filtering the reflected data, together with the actual image, but
additional computational cost is incurred.

A second problem is that if it is necessary to suppress a narrow
band of frequencies (As is small, as in equation 4}, the number
of weights required is large. If too few filter weights are used
the filter will not pass the data accurately; it also may "ring,"
or sense high—contrast features in the image when it is centered
some distance away. Ringing caused by a poorly designed +ilter
can be quite annoying to the photointerpreter (Figure 3). It can
be reduced by using a frequency—domain filter with softer edges
than the binary mask; e.g., weights described by a Gaussian
function. In this case, the right-hand terms in Equation 1 must
be multiplied by the transform of the new function (in this
example, another Gaussian function) instead of the sinc function.

Although this practice was not followed in producing the examples
used above, it is important to filter the image before panorama
correction. In this way, the noise is not dispersed throughout
the spectrum, and the filter can be designed to remocve less
signal.
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Figure 3. The TIMS image of Newfoundland (Fig., 1la),
filtered by convolution with a 1-D filter kernel that
induced excessive "ringing" off hard edges.

Analysis: Model Emittance Calculation

Once the noise has been removed from the TIMS datz, and the
images have been calibrated in units of photon flux, they ars
ready for analysis. In geoclogical applications, the smittance
(€) information imbedded in the radiance data is of great sig-
nificance, because it is related to the composition of the imagsd
surface, eapELzaily for silicate rocks. On ths othsr hand, ths
temperature varies with topography, and throoghout the day. It
is only indirectly rel a+ed to the surfaces composition. Thus it
is desirable to separate temperature and emittance information.
Unftortunately, with six channels of data and ssven unknowns {(six
emittance valuss and the temperature! the problem is uwnderdeter-—
mined. We must make an assumption in order to calculate anything
at all. The assumption gensrally made is that the smittance €4
channel & {(with a bandpass centered at ~11 mm) is  known. It=
values £’ is generally taken to be about .23 {(emittance ranges
from O to 1), thought to be typical for a wide rangs of silicate
minerals. Hawever, this assumption is gensrally not trus for
mafic and ultramafic silicate rocks, and this must be remembered
in interpreting emittance data calculated this WAY . In general,
it is ussful tD identity emittances €' calculated from thermal IR
sCanners  as “"model emittances," so that the basic assumption is
not overlooked. .

The temperatuare T at which the Fra

=it ce 1= radiating 15
approximated using Flanck’'s Law, for the photon flux or radiance
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R in Channel b&:

r -1
C Eg C
Te = = n [—‘1—-—-— + 1] ()
)‘-6 [ Ré:"\é“
where A\ is the wavelength for channesl 6. Strictly, there is no

=zingle wvalue of A, because the bandpass for channel 6 is 11.2-
12.2 wmm, so0o in order to calculate Re Planck’'s Law must be
integrated over A. Equation S5 would be accordingly more
complicated, but Ffor the purposes of this discussion it is
simplified by assuming that the bandpass is quite narrow and
there does exist a single value for \e-

Farameter e¢=z=ch/k 1in equation 5 is a constant, and €L is the
smittance assumed for channel 6. The parameter ¢ is the speed of
lighty h 1is Planck’'s constant; and k is Boltzmann’'s constant.
Because the TIMS5 detectors respond to the photon flux, rather
than the energy [Falluconi and Meeks, 198531, the right side of
equation 5 has been divided by a factor of he/\ (the energy for a
photon of wavelength \).

Once Te is estimated, model blackbody values of R{ can be
calculated for channels 1-5, according to:

c 1
Ri{Tg) = (&)
114 {E}(p[CZ‘!(XiTé) 1 - 13

Emittance € is the proportionality constant between observed
radiance and the ideal radiance from a blackbody at the same
kinetic temperature. Therefore, we may calculate model
emittances €{ according to

Ry
R{

Ei’. = Eé

(7}

Images made of model emittance data show little topography or
temporal heating patterns; they show largely compositional
information. Fictures of such emittance data for Death Valley
are given in Kahle and Walker [1284].

As mentioned above, the assumption that € = 0,93 is not wvalid
for mafic rocks; measured wvalues are lower. Thus emittance data
for some channels of TIMS data may exceed unity over ultramafic
and mafic rocks. What has happened is that the reststrahlen band
{5 - 0O wvibration) has shifted to longer wavelengths in mafic
minerals. Consequently, +for mafic minerals a better assumption
would be that € = 0.93 fe.g., Lyon, 19651. It is
computationally simple to find the channel for which the apparent
Ti is maximum. If we assume a value for the maximum €, and not
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restrict the channel for which it is found, we rcan calculate
reasonable values of €' regardless of the type of silicate rock
in the scene.

Finally, 1t may be useful to estimate the wavelength of the
reststrahlen band and report that information as an image.
Gillespie and Abbott [1984]1 showed that this parameter 1is
sensitive to silicate mineralaogy in a range of TIMS images. They
estimated the central wavelength of the reststrahlen band by

fitting a Baussian function to the emittance data. Other
reported parameters were the width of the reststrahlen band
(standard deviation) and the intensity (difference between

minimum and maximum emittance values}.

Decorrelation Stretching

Commonly, it is desired to display false-color pictures made from
three selected channels of TIMS data. It 15 easier to interpret
these data if some topographic {(temperature}! data is left in the
pictures. Also, 1f noise removal is incomplete, or for very
noisy data, the emittance data will be heavily striped.

Socha and Schwartz [1978] devised a technique to exaggerate the
highly correlated emittance information, while retaining some of
the temperature information. They called this method the “"decor-
relation stretch” because it involved calculating statistically
independent or orthogonal images in which the covariance was
zero. This was done by principal-—component analysis.

Early efforts to use principal-—-component images as red—green—-blue
(RBB} components of false—color pictures were successful in
producing brightly colored pictures, but these were hard to
interpret in terms of physical processes in the scene. Soha and
Schwartz intended to produced a false—-color picture in which
there was little distortion of hue, but in which color saturation
or chroma was exaggerated and the intensity or lightness was
suppressed. This they did by equalizing the variance in the
principal—component: images, and then applying the inverse
transformation to recreate the images in the original RGB domain.
False—-color pictures made from “"decorrelation—stretched”" images
were colorful, but could easily be related to the original images
or to spectral data describing the scene. An example of a
"decorrelated"” false-color picture may be found in Kahle and
Rowan [17801. A thorough discussion of the method may be found
in Gillespie et al. [1986&1].

SUMMARY

TIMS data can be used both for photointerpretation and scene
analysis, but careful processing is in genaral necessary hefore
they may be used. This processing involves image calibration to
suppress effects due +to detector sensitivity changes, and
filtering to remove microphonic and other high—frequency striping
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noise. Additionally, it may be necessary to identify bit errors
in the image and remove them by interpeolation. Once the image is
free of artifacts, additional processing is necessary to separate
emittance and temperature information. This is desirable because
emittance information describes the composition of the imaged
scene, especially if i1t contains =silicate minerals. Wavelengths
of reststrahlen bands may be estimated from emittance data by
curve—fitting techniques. This information is related to rock
type. Alternatively, images may be prepared for photointerpreta—
tion by ‘“decorrelating" them before contrast-stretching and
construction of false—color pictures.
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